Search results for "Random Processe"

showing 10 items of 48 documents

Stochastic models for phytoplankton dynamics in Mediterranean Sea

2016

Abstract In this paper, we review some results obtained from three one-dimensional stochastic models, which were used to analyze picophytoplankton dynamics in two sites of the Mediterranean Sea. Firstly, we present a stochastic advection–reaction–diffusion model to describe the vertical spatial distribution of picoeukaryotes in a site of the Sicily Channel. The second model, which is an extended version of the first one, is used to obtain the vertical stationary profiles of two groups of picophytoplankton, i.e. Pelagophytes and Prochlorococcus, in the same marine site as in the previous case. Here, we include intraspecific competition of picophytoplanktonic groups for limiting factors, i.e.…

0106 biological sciences010504 meteorology & atmospheric sciencesStochastic modellingRandom processeAtmospheric sciences01 natural sciencesDeep chlorophyll maximum; Marine ecosystems; Phytoplankton dynamics; Random processes; Spatial ecology; Stochastic differential equations; Ecology Evolution Behavior and Systematics; Ecological ModelingStochastic differential equationMediterranean seaMarine ecosystemSpatial ecology14. Life underwaterPhytoplankton dynamicEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesDeep chlorophyll maximumStochastic differential equationbiologyStochastic processEcology010604 marine biology & hydrobiologyEcological Modelingbiology.organism_classificationEcology Evolution Behavior and SystematicSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Light intensitySpatial ecologyDeep chlorophyll maximumProchlorococcusEcological Complexity
researchProduct

Comparison of approaches for generation of fully non-stationary artificial accelerograms

2019

The modelling of the seismic input is a critical aspect when non-linear time-history analyses (NLTHAs) are carried out. As a matter of fact, seismic response of structures is very sensitive to the input excitation time history. The present work aims to highlight the differences in the input modelling and the assessment of seismic response of three r.c. structures employing four generation methods of fully non-stationary artificial accelerogram sets at a given construction site. For each method, seven accelerograms are generated and employed to perform NLTHAs on three r.c. structures having irregular mass and stiffness distributions. The original contribution of the paper relies in the crite…

Artificial accelerograms Fully non-stationary random processes Spectrum-compatible RC structuresSettore ICAR/09 - Tecnica Delle Costruzioni
researchProduct

Stochastic differential calculus for wind-exposed structures with autoregressive continuous (ARC) filters

2008

In this paper, an alternative method to represent Gaussian stationary processes describing wind velocity fluctuations is introduced. The technique may be considered the extension to a time continuous description of the well-known discrete-time autoregressive model to generate Gaussian processes. Digital simulation of Gaussian random processes with assigned auto-correlation function is provided by means of a stochastic differential equation with time delayed terms forced by Gaussian white noise. Solution of the differential equation is a specific sample of the target Gaussian wind process, and in this paper it describes a digitally obtained record of the wind turbolence. The representation o…

Autoregressive continuous (ARC) modelRenewable Energy Sustainability and the EnvironmentStochastic processMechanical EngineeringGaussianOrnstein–Uhlenbeck processGaussian random fieldStochastic differential equationsymbols.namesakeQuasi-static theoryAutoregressive modelFourier transformsymbolsGaussian functionCalculusStochastic differential calculuApplied mathematicsGaussian random processeSettore ICAR/08 - Scienza Delle CostruzioniGaussian processCivil and Structural EngineeringMathematicsJournal of Wind Engineering and Industrial Aerodynamics
researchProduct

How diffusivity, thermocline and incident light intensity modulate the dynamics of Deep Chlorophyll Maximum in Tyrrhenian Sea

2015

During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time- dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environm…

Chlorophyll0106 biological sciencesLight010504 meteorology & atmospheric sciencesMixed layerlcsh:MedicineOceanographyRandom processeAtmospheric sciences01 natural scienceschemistry.chemical_compoundPhytoplanktonMediterranean SeaMarine ecosystemSpatial ecologySeawaterMarine ecosystem14. Life underwaterPhytoplankton dynamiclcsh:Science0105 earth and related environmental sciencesDeep chlorophyll maximumMultidisciplinaryEcology010604 marine biology & hydrobiologylcsh:RTemperaturePelagic zoneModels TheoreticalSpatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Light intensitychemistry13. Climate actionChlorophyllPhytoplanktonStochastic differential equationsDeep chlorophyll maximumEnvironmental sciencelcsh:QThermoclineAlgorithmsResearch Article
researchProduct

Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion …

2013

A stochastic advection-reaction-diffusion model with terms of multiplicative white Gaussian noise, valid for weakly mixed waters, is studied to obtain the vertical stationary spatial distributions of two groups of picophytoplankton, i.e., picoeukaryotes and Prochlorococcus, which account about for 60% of total chlorophyll on average in Mediterranean Sea. By numerically solving the equations of the model, we analyze the one-dimensional spatio-temporal dynamics of the total picophytoplankton biomass and nutrient concentration along the water column at different depths. In particular, we integrate the equations over a time interval long enough, obtaining the steady spatial distributions for th…

ChlorophyllPopulation DynamicsPopulation ModelingRandom processeAtmospheric scienceschemistry.chemical_compoundTheoretical EcologyWater columnMediterranean seaDeep chlorophyll maximumCalculusMultidisciplinaryEcologybiologyEcologyApplied MathematicsPhysicsQStatisticsRComplex SystemsStochastic differential equationsInterdisciplinary PhysicsMedicineDeep chlorophyll maximumProchlorococcusResearch ArticleChlorophyll aScienceStatistical MechanicsDifferential EquationsPhytoplanktonMarine ecosystemMediterranean SeaSpatial ecologyStatistical MethodsPhytoplankton dynamicBiologyComputerized SimulationsStochastic ProcessesPopulation BiologyAdvectionComputational BiologyRandom VariablesModels TheoreticalSpatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsProbability Theorybiology.organism_classificationMarine EnvironmentsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Nonlinear DynamicschemistryChlorophyllComputer SciencePhytoplanktonEcosystem ModelingMathematicsEcological EnvironmentsPLoS ONE
researchProduct

Enhancement of the Lifetime of Metastable States in Er-Doped Si Nanocrystals by External Colored Noise

2015

The changes in the lifetime of a metastable energy level in Er-doped Si nanocrystals in the presence of an external source of colored noise are analyzed for different values of noise intensity and correlation time. Exciton dynamics is simulated by a set of phenomenological rate equations which take into account all the possible phenomena inherent in the energy states of Si nanocrystals and Er^{3+} ions in the host material of Si oxide. Electronic deexcitation is studied by examining the decay of the initial population of the Er atoms in the first excitation level 4I_{13/2} through fluorescence and cooperative energy transfer upconversion. Our results show that the deexcitation process of th…

Cooperative energy transfer upconversionSilicon nanocrystalFluctuation phenomena and random processePhotoluminescenceSettore FIS/03 - Fisica Della MateriaStochastic modeling and numerical simulationErbium
researchProduct

Incremental dynamic based fragility assessment of reinforced concrete structures: Stationary vs. non-stationary artificial ground motions

2017

Abstract Artificial and natural records are commonly employed by researches and practitioners to perform refined seismic assessments of structures. The techniques for the generation of artificial records and their effectiveness in producing signals which are significantly representative of real earthquakes are still debated as well as results of the consequent seismic assessment to expect from their application. The paper presents an in-depth comparative study highlighting the effect of employing different typologies of artificial ground motion records on seismic assessment results, especially addressing seismic fragility curves. Three sets of 50 stationary, nonstationary evenly modulated a…

EngineeringPeak ground accelerationIncremental dynamic analysi0211 other engineering and technologiesSoil Science020101 civil engineering02 engineering and technologyIncremental dynamic analysisSpectral accelerationIncremental Dynamic Analysis0201 civil engineeringFragilitySeismic assessmentReinforced concrete structuresNonlinear dynamic analysiNon-stationary random processeNonlinear dynamic analysisCivil and Structural EngineeringReinforced concrete structureFragility curves021110 strategic defence & security studiesbusiness.industryArtificial accelerogramsNon-stationary random processesStructural engineeringArtificial accelerograms; Fragility curves; Incremental dynamic analysis; Non-stationary random processes; Nonlinear dynamic analysis; Reinforced concrete structures; Civil and Structural Engineering; Geotechnical Engineering and Engineering Geology; Soil ScienceGeotechnical Engineering and Engineering GeologyReinforced concreteArtificial accelerograms Non-stationary random processes Nonlinear dynamic analysis Incremental dynamic analysis Fragility curves Reinforced concrete structuresNonlinear systemTime historyArtificial accelerogramFragility curvebusiness
researchProduct

Stochastic resonance effect on the vibratory signals of stink bugs

2007

In this work we investigate the role of the environmental noise in the sexual communication between individuals of the Sicilian green stink bug Nezara Viridula. Our goal is to analyze the spectral features of several types of songs emitted by these insects and to find the amplitude threshold value. Below this value the signal is so weak that no neuronal activation occurs in Nezara Viridula. The presence of activation is revealed by performing directionality tests and observing the behavioral response of the insect in localizing the source of vibratory signals. Afterwards experiments are performed by using a sub-threshold signal added to a white Gaussian noise. The response of the test insec…

Fluctuation phenomena random processes noise and Brownian motionNoise in biological systemBiophysical mechanisms of interaction
researchProduct

Stability in a System subject to Noise with Regulated Periodicity

2011

The stability of a simple dynamical system subject to multiplicative one-side pulse noise with hidden periodicity is investigated both analytically and numerically. The stability analysis is based on the exact result for the characteristic functional of the renewal pulse process. The influence of the memory effects on the stability condition is analyzed for two cases: (i) the dead-time-distorted poissonian process, and (ii) the renewal process with Pareto distribution. We show that, for fixed noise intensity, the system can be stable when the noise is characterized by high periodicity and unstable at low periodicity.

Fluctuation phenomena random processes noise and Brownian motionPeriodicityStochastic processProbability theory stochastic processes and statisticStochastic analysis methodsOrnstein–Uhlenbeck processModels TheoreticalStability (probability)Settore FIS/03 - Fisica Della MateriaStable processsymbols.namesakeStochastic differential equationNoiseControl theorysymbolsPareto distributionRenewal theoryStatistical physicsMathematics
researchProduct

Numerical investigation of optical heartbeats with external driving forces

2010

The role of harmonic and random external forces in a phenomenological nonlinear model of optical heartbeats is investigated. External forces trigger damped oscillations at the natural frequency of the system and higher harmonics. The numerical results are compared with experimental ones.

Fluctuation phenomena random processes noise and Brownian motionPhysicsClassical mechanicsNonlinear modelHarmonicsHarmonicGeneral Physics and AstronomyNatural frequencyMechanicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Damped oscillationsMoscow University Physics Bulletin
researchProduct